Solution Bank

Exercise 6E

- **1 a** $\sin 4\theta = 0$ $0^{\circ} \le \theta \le 360^{\circ}$ Let $X = 4\theta$ so $0^{\circ} \le X \le 1440^{\circ}$ Solve $\sin X = 0$ in the interval $0^{\circ} \le X \le 1440^{\circ}$ From the graph of $y = \sin X$, $\sin X = 0$ where $X = 0^{\circ}$, 180° , 360° , 540° , 720° , 900° , 1080° , 1260° , 1440° $\theta = \frac{X}{4}$ $= 0^{\circ}$, 45° , 90° , 135° , 180° , 225° , 270° , 315° , 360°
 - **b** $\cos 3\theta = -1$ $0^{\circ} \le \theta \le 360^{\circ}$ Let $X = 3\theta$ so $0^{\circ} \le X \le 1080^{\circ}$ Solve $\cos X = 0$ in the interval $0^{\circ} \le X \le 1080^{\circ}$ From the graph of $y = \cos X$, $\cos X = -1$ where $X = 180^{\circ}$, 540° , 900° , $\theta = \frac{X}{3}$ $= 60^{\circ}$, 180° , 300°
 - c $\tan 2\theta = 1$ $0^{\circ} \le \theta \le 360^{\circ}$ Let $X = 2\theta$ Solve $\tan X = 1$ in the interval $0^{\circ} \le X \le 720^{\circ}$. A solution is $X = \tan^{-1}(1) = 45^{\circ}$ As $\tan X$ is +ve, X is in the first and third quadrants. So $X = 45^{\circ}$, 225°, 405°, 585°

$$\theta = \frac{X}{2}$$

= 22^{1/2}°, 112^{1/2}°, 202^{1/2}°, 292^{1/2}°

2 a $\cos 2\theta = \frac{1}{2}, \ 0 \le \theta \le 2\pi$ Let $X = 2\theta$ $\cos X = \frac{1}{2}$ As $X = 2\theta$ and $0 \le \theta \le 2\pi$, the interval for X is $0 \le X \le 4\pi$

The principal solution for X is $\frac{\pi}{3}$ The other solutions for X are $2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$, $2\pi + \frac{\pi}{3} = \frac{7\pi}{3}$ and $4\pi - \frac{\pi}{3} = \frac{11\pi}{3}$ Since $X = 2\theta$ $\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$

INTERNATIONAL A LEVEL

Pure Mathematics 2

2 **b** $\tan\left(\frac{\theta}{2}\right) = -\frac{1}{\sqrt{3}}, \ 0 \le \theta \le 2\pi$ Let $X = \frac{\theta}{2}$ $\tan X = -\frac{1}{\sqrt{3}}$ As $X = \frac{\theta}{2}$ and $0 \le \theta \le 2\pi$, the interval for X is $0 \le X \le \pi$ $-\frac{1}{\sqrt{3}}$

The principal solution for X is $\pi - \frac{\pi}{6} = \frac{5\pi}{6}$

Since
$$X = \frac{\theta}{2}$$

 $\theta = \frac{5\pi}{3}$

INTERNATIONAL A LEVEL

Pure Mathematics 2

3 a $\tan(45^\circ - \theta) = -1$ $0^\circ \le \theta \le 360^\circ$ Let $X = 45^\circ - \theta$ so $0^\circ \ge -\theta \ge -360^\circ$ Solve $\tan X = -1$ in the interval $45^\circ \ge X \ge -315^\circ$ A solution is $X = \tan^{-1}(-1) = -45^\circ$ As $\tan X$ is -ve, X is in the second and fourth quadrants.

$$X = -225^{\circ}, -45^{\circ}$$

So $\theta = 45^{\circ} - X = 90^{\circ}, 270^{\circ}$

b
$$2\sin\left(\theta - \frac{\pi}{9}\right) = 1, \ 0 \le \theta \le 2\pi$$

let $X = \theta - \frac{\pi}{9}$
 $\sin\left(\theta - \frac{\pi}{9}\right) = \frac{1}{2}$

The interval for X is $-\frac{\pi}{9} \le X \le \frac{17\pi}{9}$

The principal value of X is $\frac{\pi}{6}$ The other value of X is $\pi - \frac{\pi}{6} = \frac{5\pi}{6}$

Since
$$X = \theta - \frac{\pi}{9}$$

 $\theta = \frac{5\pi}{18}$ and $\theta = \frac{17\pi}{18}$

Solution Bank

3 c Solve $\tan X = \sqrt{3}$ where $X = (\theta + 75^{\circ})$. The interval for X is $75^{\circ} \le X \le 435^{\circ}$ One solution is $\tan^{-1}(\sqrt{3}) = 60^{\circ}$

(This is not in the interval)

As $\tan X$ is +ve, solutions are in the first and third quadrants.

3 e Solve $\cos X^{\circ} = 0.6$ where $X = (70^{\circ} - x)$.

The interval for X is $180 + 70 \ge X \ge -180 + 70$ i.e. $-110 \le X \le 250$. First solution is $\cos^{-1}(0.6) = 53.1^{\circ}$ As $\cos X^{\circ}$ is + ve, X is in the first and fourth quadrants.

- $X = -53.1^{\circ}, +53.1^{\circ}$ So $\theta = 70^{\circ} - X$ = 16.9°, 123° (3 s.f.)
- 4 a Let $X = 3\theta$

So $3 \sin X = 2 \cos X$ $\frac{\sin X}{\cos X} = \frac{2}{3}$ $\tan X = \frac{2}{3}$ As $X = 3\theta$, then as $0^{\circ} \le \theta \le 180^{\circ}$ So $3 \times 0^{\circ} \le X \le 3 \times 180^{\circ}$ So the interval for X is $0^{\circ} \le X \le 540^{\circ}$. $X = 33.7^{\circ}, 213.7^{\circ}, 393.7^{\circ}$ i.e. $3\theta = 33.7^{\circ}, 213.7^{\circ}, 393.7^{\circ}$ So $\theta = 11.2^{\circ}, 71.2^{\circ}, 131.2^{\circ}$

Solution Bank P Pearson 4 **b** $4\sin\left(\theta + \frac{\pi}{4}\right) = 5\cos\left(\theta + \frac{\pi}{4}\right), \ 0 \le \theta \le \frac{5\pi}{2}$ Let $X = \theta + \frac{\pi}{4}$ $4\sin X = 5\cos X, \ \frac{\pi}{4} \le X \le \frac{11\pi}{4}$ $\frac{\sin X}{\cos X} = \frac{5}{4}$ $\tan X = \frac{5}{4}$ $\frac{5}{4}$ $5\pi/2$ $\pi/2$ $3\pi/2$ X = 0.896, $X = \pi + 0.896 = 4.04$ and $X = 2\pi + 0.896 = 7.18$ Since $X = \theta + \frac{\pi}{4}$ $\theta = 0.111$, $\theta = 3.25$ and $\theta = 6.39$ c Let X = 2x $2\sin X - 7\cos X = 0$ $2\sin X = 7\cos X$ $\frac{\sin X}{\cos X} = \frac{7}{2}$ $\overline{\cos X} =$ $\tan X = \frac{7}{2}$ As X = 2x, then as $0^\circ \le x \le 180^\circ$ So $2 \times 0^{\circ} \leq X \leq 2 \times 180^{\circ}$ So the interval for *X* is $0^{\circ} \le X \le 360^{\circ}$.

i.e.
$$2x = 74.05^{\circ}$$
, 254.05°
So $x = 37.0^{\circ}$, 127.0°

 $X = 74.05^{\circ}, 254.05^{\circ}$

4 d $\sqrt{3}\sin\left(\theta + \frac{\pi}{4}\right) + \cos\left(\theta + \frac{\pi}{4}\right) = 0, \ 0 \le \theta \le \pi$ Let $X = \theta + \frac{\pi}{4}$ $\sqrt{3}\sin X + \cos X = 0, \ \frac{\pi}{4} \le \theta \le \frac{5\pi}{4}$ $\sqrt{3}\sin X = -\cos X$ $\frac{\sin X}{\cos X} = -\frac{1}{\sqrt{3}}$ $\tan X = -\frac{1}{\sqrt{3}}$ $3\pi/2$ $\pi/2$ $\frac{1}{\sqrt{3}}$ $X = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$ Since $X = \theta + \frac{\pi}{4}$ $\theta = \frac{7\pi}{12}$ 5 a Let $X = x + 20^{\circ}$

So $\sin X = \frac{1}{2}$ As $X = x + 20^{\circ}$, then as $0 \le x \le 180^{\circ}$ So $0 + 20 \le x \le 180^{\circ} + 20$ So the interval for X is $20^{\circ} \le X \le 200^{\circ}$. $X = 30^{\circ}, 150^{\circ}$ i.e. $x + 20^{\circ} = 30^{\circ}, 150^{\circ}$ So $x = 10^{\circ}, 130^{\circ}$

Solution Bank

5 b Let X = 2xSo $\cos X = -0.8$ As X = 2x, then as $0 \le x \le 180^{\circ}$ So $2 \times 0 \le X \le 2 \times 180^{\circ}$ So the interval for X is $0 \le X \le 360^{\circ}$ $X = 143.13^{\circ}, 216.87^{\circ}$ i.e. $2x = 143.13^{\circ}, 216.87^{\circ}$ So $x = 71.6^{\circ}, 108.4^{\circ}$

Solution Bank

- 7 a $4\sin x = 3\cos x$ $\frac{\sin x}{\cos x} = \frac{3}{4}$ $\tan x = \frac{3}{4}$
 - **b** Let $X = 2\theta$ So $\tan X = \frac{3}{4}$ As $X = 2\theta$, then as $0^{\circ} \le \theta \le 360^{\circ}$ So $2 \times 0^{\circ} \le X \le 2 \times 360^{\circ}$ So the interval for X is $0^{\circ} \le X \le 720^{\circ}$. $X = 36.87^{\circ}, 216.87^{\circ}, 396.87^{\circ}, 576.87^{\circ}$ i.e. $2\theta = 36.87^{\circ}, 216.87^{\circ}, 396.87^{\circ}, 576.87^{\circ}$ So $\theta = 18.4^{\circ}, 108.4^{\circ}, 198.4^{\circ}, 288.4^{\circ}$
- 8 a $\tan kx = -\frac{1}{\sqrt{3}}, k > 0$ Since $x = \frac{\pi}{3}$ is a solution $\tan\left(\frac{\pi k}{3}\right) = -\frac{1}{\sqrt{3}}$ $\frac{\pi k}{3} = \frac{5\pi}{6}$ $k = \frac{5}{2}$
 - **b** This is not the only possible value of *k* as increasing *k* will bring another 'branch' of the tan graph into place.

Challenge

Let
$$X = 3x - 45^{\circ}$$

So sin $X = \frac{1}{2}$
As $X = 3x - 45^{\circ}$, then as $0^{\circ} \le x \le 180^{\circ}$
So $3 \times 0^{\circ} - 45^{\circ} \le x \le 3 \times 180^{\circ} - 45^{\circ}$
So the interval for X is $-45^{\circ} \le X \le 495^{\circ}$.
 $X = 30^{\circ}, 150^{\circ}, 390^{\circ}$
i.e. $3x - 45^{\circ} = 30^{\circ}, 150^{\circ}, 390^{\circ}$
So $x = 25^{\circ}, 65^{\circ}, 145^{\circ}$