Pure Mathematics 2

Exercise 6E

1 a $\sin 4 \theta=0 \quad 0^{\circ} \leq \theta \leq 360^{\circ}$
Let $X=4 \theta$ so $0^{\circ} \leq X \leq 1440^{\circ}$
Solve $\sin X=0$ in the interval
$0^{\circ} \leq X \leq 1440^{\circ}$
From the graph of $y=\sin X, \sin X=0$
where
$X=0^{\circ}, 180^{\circ}, 360^{\circ}, 540^{\circ}, 720^{\circ}, 900^{\circ}$, $1080^{\circ}, 1260^{\circ}, 1440^{\circ}$
$\theta=\frac{X}{4}$
$=0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 270^{\circ}$, $315^{\circ}, 360^{\circ}$
b $\cos 3 \theta=-1 \quad 0^{\circ} \leq \theta \leq 360^{\circ}$
Let $X=3 \theta$ so $0^{\circ} \leq X \leq 1080^{\circ}$
Solve $\cos X=0$ in the interval
$0^{\circ} \leq X \leq 1080^{\circ}$
From the graph of $y=\cos X, \cos X=-1$
where

$$
\begin{aligned}
X & =180^{\circ}, 540^{\circ}, 900^{\circ}, \\
\theta & =\frac{X}{3} \\
& =60^{\circ}, 180^{\circ}, 300^{\circ}
\end{aligned}
$$

c $\quad \tan 2 \theta=1 \quad 0^{\circ} \leq \theta \leq 360^{\circ}$
Let $X=2 \theta$
Solve $\tan X=1$ in the interval
$0^{\circ} \leq X \leq 720^{\circ}$.
A solution is $X=\tan ^{-1}(1)=45^{\circ}$
As $\tan X$ is $+\mathrm{ve}, X$ is in the first and third quadrants.
So $X=45^{\circ}, 225^{\circ}, 405^{\circ}, 585^{\circ}$

$$
\begin{aligned}
\theta & =\frac{X}{2} \\
& =22 \frac{1}{2}^{\circ}, 112 \frac{1}{2}^{\circ}, 202 \frac{1}{2}^{\circ}, 292 \frac{1}{2}^{\circ}
\end{aligned}
$$

2 a $\cos 2 \theta=\frac{1}{2}, 0 \leq \theta \leq 2 \pi$
Let $X=2 \theta$
$\cos X=\frac{1}{2}$
As $X=2 \theta$ and $0 \leq \theta \leq 2 \pi$, the interval for X is $0 \leq X \leq 4 \pi$

The principal solution for X is $\frac{\pi}{3}$
The other solutions for X are $2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3}$,
$2 \pi+\frac{\pi}{3}=\frac{7 \pi}{3}$ and $4 \pi-\frac{\pi}{3}=\frac{11 \pi}{3}$
Since $X=2 \theta$
$\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$

Pure Mathematics 2

2 b $\tan \left(\frac{\theta}{2}\right)=-\frac{1}{\sqrt{3}}, 0 \leq \theta \leq 2 \pi$
Let $X=\frac{\theta}{2}$
$\tan X=-\frac{1}{\sqrt{3}}$
As $X=\frac{\theta}{2}$ and $0 \leq \theta \leq 2 \pi$, the interval for X is $0 \leq X \leq \pi$

The principal solution for X is $\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$
Since $X=\frac{\theta}{2}$
$\theta=\frac{5 \pi}{3}$

2 c $\sin (-\theta)=\frac{1}{\sqrt{2}}, 0 \leq \theta \leq 2 \pi$
$-\sin \theta=\frac{1}{\sqrt{2}}$
$\sin \theta=-\frac{1}{\sqrt{2}}$

$\theta=\frac{5 \pi}{4}$ and $\theta=\frac{7 \pi}{4}$

Pure Mathematics 2

3 a $\tan \left(45^{\circ}-\theta\right)=-1 \quad 0^{\circ} \leq \theta \leq 360^{\circ}$
Let $X=45^{\circ}-\theta$ so $0^{\circ} \geq-\theta \geq-360^{\circ}$
Solve $\tan X=-1$ in the interval $45^{\circ} \geq X \geq-315^{\circ}$
A solution is $X=\tan ^{-1}(-1)=-45^{\circ}$
As $\tan X$ is - ve, X is in the second and fourth quadrants.

$X=-225^{\circ},-45^{\circ}$
So $\theta=45^{\circ}-X=90^{\circ}, 270^{\circ}$
b $2 \sin \left(\theta-\frac{\pi}{9}\right)=1,0 \leq \theta \leq 2 \pi$
let $X=\theta-\frac{\pi}{9}$
$\sin \left(\theta-\frac{\pi}{9}\right)=\frac{1}{2}$
The interval for X is $-\frac{\pi}{9} \leq X \leq \frac{17 \pi}{9}$ $\sin X=\frac{1}{2}$

The principal value of X is $\frac{\pi}{6}$
The other value of X is $\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$
Since $X=\theta-\frac{\pi}{9}$
$\theta=\frac{5 \pi}{18}$ and $\theta=\frac{17 \pi}{18}$

3 c Solve $\tan X=\sqrt{3}$ where $X=\left(\theta+75^{\circ}\right)$.
The interval for X is $75^{\circ} \leq X \leq 435^{\circ}$
One solution is $\tan ^{-1}(\sqrt{3})=60^{\circ}$
(This is not in the interval)
As $\tan X$ is +ve , solutions are in the first and third quadrants.

$X=240^{\circ}, 420^{\circ}$
So $\theta=X-75^{\circ}$

$$
=165^{\circ}, 345^{\circ}
$$

d $\sin \left(\theta-\frac{\pi}{18}\right)=-\frac{\sqrt{3}}{2}, 0 \leq \theta \leq 2 \pi$
let $X=\theta-\frac{\pi}{18}$
$\sin X=-\frac{\sqrt{3}}{2}$
The interval for X is $-\frac{\pi}{18} \leq X \leq \frac{35 \pi}{18}$

So $X=\frac{4 \pi}{3}$ and $X=\frac{5 \pi}{3}$
Since $X=\theta-\frac{\pi}{18}$
$\theta=\frac{25 \pi}{18}$ and $\theta=\frac{31 \pi}{18}$

Pure Mathematics 2

3 e Solve $\cos X^{\circ}=0.6$ where $X=\left(70^{\circ}-x\right)$.
The interval for X is
$180+70 \geq X \geq-180+70$
i.e. $-110 \leq X \leq 250$.

First solution is $\cos ^{-1}(0.6)=53.1^{\circ}$
As $\cos X^{\circ}$ is $+\mathrm{ve}, X$ is in the first and fourth quadrants.

$$
X=-53.1^{\circ},+53.1^{\circ}
$$

So $\theta=70^{\circ}-X$

$$
\left.=16.9^{\circ}, 123^{\circ} \text { (3 s.f. }\right)
$$

4 a Let $X=3 \theta$
So $3 \sin X=2 \cos X$
$\frac{\sin X}{\cos X}=\frac{2}{3}$
$\tan X=\frac{2}{3}$
As $X=3 \theta$, then as $0^{\circ} \leq \theta \leq 180^{\circ}$
So $3 \times 0^{\circ} \leq X \leq 3 \times 180^{\circ}$
So the interval for X is $0^{\circ} \leq X \leq 540^{\circ}$.
$X=33.7^{\circ}, 213.7^{\circ}, 393.7^{\circ}$
i.e. $3 \theta=33.7^{\circ}, 213.7^{\circ}, 393.7^{\circ}$

So $\theta=11.2^{\circ}, 71.2^{\circ}, 131.2^{\circ}$

4 b $4 \sin \left(\theta+\frac{\pi}{4}\right)=5 \cos \left(\theta+\frac{\pi}{4}\right), 0 \leq \theta \leq \frac{5 \pi}{2}$
Let $X=\theta+\frac{\pi}{4}$
$4 \sin X=5 \cos X, \frac{\pi}{4} \leq X \leq \frac{11 \pi}{4}$
$\frac{\sin X}{\cos X}=\frac{5}{4}$
$\tan X=\frac{5}{4}$

$X=0.896, X=\pi+0.896=4.04$ and $X=2 \pi+0.896=7.18$
Since $X=\theta+\frac{\pi}{4}$
$\theta=0.111, \theta=3.25$ and $\theta=6.39$
c Let $X=2 x$
$2 \sin X-7 \cos X=0$
$2 \sin X=7 \cos X$
$\frac{\sin X}{\cos X}=\frac{7}{2}$
$\tan X=\frac{7}{2}$
As $X=2 x$, then as $0^{\circ} \leq x \leq 180^{\circ}$
So $2 \times 0^{\circ} \leq X \leq 2 \times 180^{\circ}$
So the interval for X is $0^{\circ} \leq X \leq 360^{\circ}$.
$X=74.05^{\circ}, 254.05^{\circ}$
i.e. $2 x=74.05^{\circ}, 254.05^{\circ}$

So $x=37.0^{\circ}, 127.0^{\circ}$

Pure Mathematics 2

Solution Bank

4 d $\sqrt{3} \sin \left(\theta+\frac{\pi}{4}\right)+\cos \left(\theta+\frac{\pi}{4}\right)=0,0 \leq \theta \leq \pi$
Let $X=\theta+\frac{\pi}{4}$
$\sqrt{3} \sin X+\cos X=0, \frac{\pi}{4} \leq \theta \leq \frac{5 \pi}{4}$
$\sqrt{3} \sin X=-\cos X$
$\frac{\sin X}{\cos X}=-\frac{1}{\sqrt{3}}$
$\tan X=-\frac{1}{\sqrt{3}}$

$X=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$
Since $X=\theta+\frac{\pi}{4}$
$\theta=\frac{7 \pi}{12}$
5 a Let $X=x+20^{\circ}$
So $\sin X=\frac{1}{2}$
As $X=x+20^{\circ}$, then as $0 \leq x \leq 180^{\circ}$
So $0+20 \leq x \leq 180^{\circ}+20$
So the interval for X is $20^{\circ} \leq X \leq 200^{\circ}$.
$X=30^{\circ}, 150^{\circ}$
i.e. $x+20^{\circ}=30^{\circ}, 150^{\circ}$

So $x=10^{\circ}, 130^{\circ}$

5 b Let $X=2 x$
So $\cos X=-0.8$
As $X=2 x$, then as $0 \leq x \leq 180^{\circ}$
So $2 \times 0 \leq X \leq 2 \times 180^{\circ}$
So the interval for X is $0 \leq X \leq 360^{\circ}$ $X=143.13^{\circ}, 216.87^{\circ}$
i.e. $2 x=143.13^{\circ}, 216.87^{\circ}$

So $x=71.6^{\circ}, 108.4^{\circ}$
6 a

$\mathbf{b}\left(0, \frac{\sqrt{3}}{2}\right),\left(\frac{2 \pi}{3}, 0\right)$ and $\left(\frac{5 \pi}{3}, 0\right)$

6 c $\sin \left(x+\frac{\pi}{3}\right)=0.55,0 \leq x \leq 2 \pi$
Let $X=x+\frac{\pi}{3}$
$\sin X=0.55, \frac{\pi}{3} \leq x \leq \frac{7 \pi}{3}$

$X=0.582, X=\pi-0.582=2.56$ and $X=2 \pi+0.582=6.87$
Since $X=x+\frac{\pi}{3}$
$x=-0.465, x=1.51$ and $x=5.82$
$x=-0.465$ lies outside the limits so
$x=1.51$ and $x=5.82$

7 a $4 \sin x=3 \cos x$
$\frac{\sin x}{\cos x}=\frac{3}{4}$
$\tan x=\frac{3}{4}$
b Let $X=2 \theta$
So $\tan X=\frac{3}{4}$
As $X=2 \theta$, then as $0^{\circ} \leq \theta \leq 360^{\circ}$
So $2 \times 0^{\circ} \leq X \leq 2 \times 360^{\circ}$
So the interval for X is $0^{\circ} \leq X \leq 720^{\circ}$. $X=36.87^{\circ}, 216.87^{\circ}, 396.87^{\circ}, 576.87^{\circ}$
i.e. $2 \theta=36.87^{\circ}, 216.87^{\circ}, 396.87^{\circ}, 576.87^{\circ}$

So $\theta=18.4^{\circ}, 108.4^{\circ}, 198.4^{\circ}, 288.4^{\circ}$

8 a $\tan k x=-\frac{1}{\sqrt{3}}, k>0$
Since $x=\frac{\pi}{3}$ is a solution
$\tan \left(\frac{\pi k}{3}\right)=-\frac{1}{\sqrt{3}}$
$\frac{\pi k}{3}=\frac{5 \pi}{6}$
$k=\frac{5}{2}$
b This is not the only possible value of k as increasing k will bring another 'branch' of the tan graph into place.

Challenge

Let $X=3 x-45^{\circ}$
So $\sin X=\frac{1}{2}$
As $X=3 x-45^{\circ}$, then as $0^{\circ} \leq x \leq 180^{\circ}$
So $3 \times 0^{\circ}-45^{\circ} \leq x \leq 3 \times 180^{\circ}-45^{\circ}$
So the interval for X is $-45^{\circ} \leq X \leq 495^{\circ}$.
$X=30^{\circ}, 150^{\circ}, 390^{\circ}$
i.e. $3 x-45^{\circ}=30^{\circ}, 150^{\circ}, 390^{\circ}$

So $x=25^{\circ}, 65^{\circ}, 145^{\circ}$

